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Geodesy

Geodesy is the science of accurately
measuring and understanding three
fundamental properties of the Earth
and their changes in time

« Geometric shape

* Rotation and orientation in space

« Gravity field

Establishing and disseminating the
Terrestrial Reference Frame (TRF) is central
to Geodesy



Terrestrial Reference Frame (TRF)

® Defl N Itl on Earth Rotationaxis —_] ,

Reference meridian

 The TRF is an accurate, stable set of positions and
velocities of reference points on Earth’s surface

» The TRF provides the stable coordinate system that
allows us to link measurements over space and time
for numerous scientific and societal applications
including critical climate and sea level change studies

° Deter m | N a‘“ on Terrestrial Reference Frame

« The GNSS, VLBI, SLR, & DORIS geodetic networks, along with ground surveys of
stations at co-located sites to tie the networks together, provide the data for
determining the TRF as well as for direct science investigations

* Improvement

« An improved TRF is needed for numerous scientific and societal applications including
critical climate and sea level change studies

GGOS Goal: TRF accurate to better than 1 mm, stable to better than 0.1 mm/yr over a decade
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Benefits of an accurate TRF

Credit: Norwegian Mapping Authority




Sea Level Change



Radar Altimetry Measurement Principle

The orbit of the
altimetry-dedicated
satellite is determined
with high precision using
GNSS, SLR and DORIS

From the precise
satellite orbit, the

> altitude of the satellite
above a global

GNSS ellipsoid is derived
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A radar altimeter on-
board the satellite
permanently transmits
signals to Earth and
receives the return
signals after reflection
at Earth's surface
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The primary
measurement is the
time taken by the radar
pulse to travel from the
satellite antenna to the
surface and back to the
satellite receiver

v

The range, or distance
between the satellite
and Earth's surface is
approximately equal to
one-half of the two-way
travel time multiplied by
the speed of light

v

The difference between
the satellite altitude and
the altimetric range
provides the surface
height with respect to
the same ellipsoid



1.3 mm/year THERMAL EXPANSION TREND, 2005-2019 ~\.88.9 mm
2.1 mm/year MASS INCREASE TREND, 2002-2019 85.0 mm
3.3 mm/year TOTAL SEA LEVEL TREND, 1993-2019
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lce Sheet Height Change



Notoost Jaroosnes and
Sgaca Adminsbaton

IGESati-2

ICE, CLOUD, AND LAND ELEVATION SATELLITE-2

Retreating glaciers. Shrinking sea ice. Melting ice sheets. The frozen reaches of Earth are changing
at dramatic rates — and the impacts, from sea level rise to altered weather patterns, span the planet.

NASA is launching the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) to measure changes to
Earth’s ice seasonally and annually. With its fast-firing laser and incredibly precise detector, ICESat-2
will create the most detailed portrait yet of heights across the globe including forests, oceans and
clouds.

ANATOMY OF
A SPACE LASER

ICESat-2 carries a single instrument, the Advanced
Topographic Laser Altimeter System (ATLAS). 1 ~a la
ATLAS has three major tasks: send pulses of laser
light to the ground, collect the returning photons in
atelescope, and record the photon travel time. With
the speed of light as a constant, the travel time can
be converted to distance traveled. And with precise
knowledge of the location of the satellite that comes
from the GPS and star trackers, the distance traveled
is converted to height.
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snowfall accumulates over centuries and millenia. Land
ice melting into the ocean causes global sea level ris
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Sea Ice forms when ocear ter freezes. In the
polar oceans, it forms a white and reflective cap
that helps regulate Earth's temperature.

The ICESat-2 mi 3

sea ice to within 1 s (3 cm), from which sea
ice thickness is calculated

Source: NASA Scientific Visualization Studio



Mass Change
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Grawvity Recovery And Climate Experiment

Due to an uneven distribution of mass inside the Earth, the Earth's gravity field
is not uniform - that is, it has "lumps". By far the biggest is a flattening at the
poles (called the Earth's oblateness), but in these three views, we've
exaggerated the scale so that many more lumps can be seen. The GRACE
Mission will map out the precise location and sizes of these lumps, enabling us
to learn more about the structure of the Earth.

The oceans undergo continual small changes in circulation. Occasionally,
however, more significant changes, like the El Nifio shown above, occur. The
picture shows the changes in sea level during an El Nifio measured by

the TOPEX/Poseidon mission. GRACE will also measure changes in ocean
circulation by "weighing" parts of the ocean to see how water has moved.

Greenland Ice Sheet

The polar ice sheets (such as the Greenland ice sheet shown above) change in
size each year, although precise measurements of this change are very
difficult to make. GRACE will "weigh" the ice sheets in Greenland and
Antarctica by measuring their gravitational attraction to better understand
their growth and/or retreat.




GRACE Measurement Principle

Satellite-to-satellite tracking in the
low-low (SST-LL) mode:
measurement of acceleration
differences between two low Earth
orbiting (LEO) satellites.

The orbits of the two satellites are
determined using GNSS. The
distance between the two satellites
Is measured with the highest
possible accuracy. The
LEO satellites acceleration differences between
= the two satellites allow the

/:T.f)’f—" w determination of the gravity field

GNSS with a spatial resolution of about
reference a,?;an?;}, Earth's 170 km for the static component

station surface  and about 300 km for monthly

solutions.




Monthly Gravity Maps

Source: Landerer et al., 2022



GRACE AND GRACE-FO Observations ofF Polar Land Ice Mass Changes 2023-04

Average Mass Loss:

147 Gigatons/year

Average Mass Loss:
271 Gigatons/year

2

Antarctic

Greenland

Mass Change (Gigatons)
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Terrestrial Water Storage Change

Water Equivalent Height Anomaly (mm)

October 2022 March 2023

300 0 300

Thanks to a wet winter, California saw tremendous gains in the amount of water in the San Joaquin, Sacramento, and Tulare river basins (outlined in yellow) from October 2022 to March 2023, GRACE-FO data

shows. The measurement includes water in lakes, rivers, reservoirs, snowpack, and groundwater aquifers. Source: NASA Scientific Visualization Studio



Tsunami Early Warning



GNSS Tsunami Early Warning System (GTEWS)

* Properly positioned GNSS receivers will
measure both the ground displacement
and the ionospheric dynamics induced
by tsunami formation and propagation.

Tsunami-Driven Traveling lonospheric
Disturbances (TIDs)

¥« GNSS Sat

lonospheric disturbances

» Real time data distribution and analysis
will provide significant improvements to
accuracy, timeliness, and efficiency in
tsunami warning.

« GTEWS is viewed as an augmentation
to build upon existing disaster warning
capabilities where they exist.

« GTEWS relies upon real time
mesoscale density of GNSS networks
and advanced computational facilities
for its effectiveness.

Source: LaBrecque, 2023



2011 Tohoku-Oki Tsunami

s 0 minutes after Japan KMw3d Eqg Tony Song {JPL

Source: Tony Song, JPL



JPL’s GUARDIAN Near-Real-Time lonospheric Monitor

Natural hazards (tsunamis, volcanic eruptions, earthquakes, etc.) generate
atmospheric waves which cause perturbations in the ionosphere, which
can be detected by measuring the Total Electron Content (TEC).
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Source: Leo Martire, JPL



JPL’s GUARDIAN Near-Real-Time lonospheric Monitor

Natural hazards (tsunamis, volcanic eruptions, earthquakes, etc.) generate 4 C
atmospheric waves which cause perturbations in the ionosphere, which acoiisst?zzgjgﬁjves .
can be detected by measuring the Total Electron Content (TEC). e —
...°'.. e
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GNSS ground networks (such as the IGS’, NASA’s, and JPL's GDGPS’s) are C- —
used to measure TEC, for each satellite-station pair and in near-real-time. -~ =
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Figure: ground GNSS networks.
Top: NASA and GDGPS.
Right: International GNSS Service (IGS).

Figure: lonospheric TEC and sea surface height map for
the 2011 Tohoku-Oki event (Galvan et al., 2012).

Source: Leo Martire, JPL



Crustal Deformation
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Seismology round Deformation

Examples from the 2011 M9.0
Tohoku-Oki (Japan) earthquake

Cadlifornia Earthquake

Clearinghouse

Source: aria.jpl.nasa.gov



response products
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2011 Tohoku-Oki
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Damage Proxy Maps



amage Proxy Map (Earthquake & Tsunami)

NASAY JPL-Caltech /Aﬁb%/ BES Produch

Original data ALOS-2 PALSAR-2 Product - JAXA

Sentinel ‘Asia, Google Earth

(2018)
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Damage Proxy Map (Cyclone)

NASA / JPL-Caltech / ARIA Product

Derived from COSMO

Google Earth

SkyMed Product - ASI (2018)




Damage Proxy Map (Wllflre)
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Engineering Geodesy



An Inaccurate Reference Frame Can Be Very Expensive

-

Design error at bridge construction in Laufenburg (2003): During the construction of the bridge
across the Rhine river in Laufenburg, a control showed that a height difference of 54 centimeters
exists between the bridge built from the Swiss side and the roadway of the German side. Reason
of the error is the fact that the horizons of the German and Swiss side are based on different
reference frames. Germany refers to the sea level of the North Sea, Switzerland to the
Mediterranean.



Observing System
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